Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 27(12): 3298-3306, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33785481

RESUMO

PURPOSE: To investigate the toxicity profile and establish an optimal dosing schedule of zotiraciclib with temozolomide in patients with recurrent high-grade astrocytoma. PATIENTS AND METHODS: This two-stage phase I trial determined the MTD of zotiraciclib combined with either dose-dense (Arm1) or metronomic (Arm2) temozolomide using a Bayesian Optimal Interval design; then a randomized cohort expansion compared the progression-free survival rate at 4 months (PFS4) of the two arms for an efficient determination of a temozolomide schedule to combine with zotiraciclib at MTD. Pharmacokinetic and pharmacogenomic profiling were included. Patient-reported outcome was evaluated by longitudinal symptom burden. RESULTS: Fifty-three patients were enrolled. Dose-limiting toxicities were neutropenia, diarrhea, elevated liver enzymes, and fatigue. MTD of zotiraciclib was 250 mg in both arms and thus selected for the cohort expansion. Dose-dense temozolomide plus zotiraciclib (PSF4 40%) compared favorably with metronomic temozolomide (PFS4 25%). Symptom burden worsened at cycle 2 but stabilized by cycle 4 in both arms. A significant decrease in absolute neutrophil count and neutrophil reactive oxygen species production occurred 12-24 hours after an oral dose of zotiraciclib but both recovered by 72 hours. Pharmacokinetic/pharmacogenomic analyses revealed that the CYP1A2_5347T>C (rs2470890) polymorphism was associated with higher AUCinf value. CONCLUSIONS: Zotiraciclib combined with temozolomide is safe in patients with recurrent high-grade astrocytomas. Zotiraciclib-induced neutropenia can be profound but mostly transient, warranting close monitoring rather than treatment discontinuation. Once validated, polymorphisms predicting drug metabolism may allow personalized dosing of zotiraciclib.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Astrocitoma/tratamento farmacológico , Astrocitoma/genética , Teorema de Bayes , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Dacarbazina/efeitos adversos , Humanos , Dose Máxima Tolerável , Temozolomida/efeitos adversos
2.
Front Oncol ; 10: 601452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520712

RESUMO

Glioma is the most common primary malignant brain tumor with a poor prognosis. Immune checkpoint inhibitors have been of great interest in investigation of glioma treatments. Here, we report single-cell transcriptomic analyses of two tumor areas from an oligodendroglioma taken from a patient who had multiple tumor recurrences, following several chemotherapies and radiation treatments. The patient subsequently received nivolumab and was considered have disease progression based on conventional diagnostic imaging after two cycles of treatment. He underwent a debulking surgical resection and pathological diagnosis was recurrent disease. During the surgery, tumor tissues were also collected from the enhancing and non-enhancing areas for a scRNAseq analysis to investigate the tumor microenvironment of these radiographically divergent areas. The scRNAseq analysis reveals a plethora of immune cells, suggesting that the increased mass observed on MRI may be partially a result of immune cell infiltration. The patient continued to receive immunotherapy after a short course of palliative radiation and remained free of disease progression for at least 12 months after the last surgery, suggesting a sustained response to immunotherapy. The scRNAseq analysis indicated that the radiological progression was in large part due to immune cell infiltrate and continued immunotherapy led to a positive clinical outcome in a patient who would have otherwise been admitted to hospice care with halting of immunotherapy. Our study demonstrates the potential of scRNAseq analyses in understanding the tumor microenvironment, which may assist the clinical decision-making process for challenging glioma cases following immunotherapy.

3.
PLoS One ; 13(7): e0200014, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975751

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common adult primary brain tumor. Multimodal treatment is empiric and prognosis remains poor. Recurrent PIK3CA missense mutations (PIK3CAmut) in GBM are restricted to three functional domains: adaptor binding (ABD), helical, and kinase. Defining how these mutations influence gliomagenesis and response to kinase inhibitors may aid in the clinical development of novel targeted therapies in biomarker-stratified patients. METHODS: We used normal human astrocytes immortalized via expression of hTERT, E6, and E7 (NHA). We selected two PIK3CAmut from each of 3 mutated domains and induced their expression in NHA with (NHARAS) and without mutant RAS using lentiviral vectors. We then examined the role of PIK3CAmut in gliomagenesis in vitro and in mice, as well as response to targeted PI3K (PI3Ki) and MEK (MEKi) inhibitors in vitro. RESULTS: PIK3CAmut, particularly helical and kinase domain mutations, potentiated proximal PI3K signaling and migration of NHA and NHARAS in vitro. Only kinase domain mutations promoted NHA colony formation, but both helical and kinase domain mutations promoted NHARAS tumorigenesis in vivo. PIK3CAmut status had minimal effects on PI3Ki and MEKi efficacy. However, PI3Ki/MEKi synergism was pronounced in NHA and NHARAS harboring ABD or helical mutations. CONCLUSION: PIK3CAmut promoted differential gliomagenesis based on the mutated domain. While PIK3CAmut did not influence sensitivity to single agent PI3Ki, they did alter PI3Ki/MEKi synergism. Taken together, our results demonstrate that a subset of PIK3CAmut promote tumorigenesis and suggest that patients with helical domain mutations may be most sensitive to dual PI3Ki/MEKi treatment.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Glioblastoma/etiologia , Glioblastoma/genética , Mutação de Sentido Incorreto , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...